Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.594
Filtrar
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , 60705 , Metabolismo Secundario
2.
Mar Drugs ; 22(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667792

RESUMEN

Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Disbiosis , Etanol , Microbioma Gastrointestinal , Plumbaginaceae , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Ratones , Células RAW 264.7 , Microbioma Gastrointestinal/efectos de los fármacos , Disbiosis/tratamiento farmacológico , Plumbaginaceae/química , Etanol/química , Masculino , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo
3.
J Phys Chem B ; 128(16): 3833-3843, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38603528

RESUMEN

The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (SCD), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogen-bond network was formed between the skin-lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin-lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.


Asunto(s)
Ceramidas , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Enlace de Hidrógeno , Colesterol/química , Colesterol/metabolismo , Epidermis/metabolismo , Epidermis/química , Etanol/química , Ácidos Grasos no Esterificados/química , Ácidos Grasos no Esterificados/metabolismo , Piel/metabolismo , Piel/química , Humanos
4.
J UOEH ; 46(1): 9-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479880

RESUMEN

This study investigated the permeation resistance of chemical protective gloves made of laminate film comprising nylon, ethylene-vinyl alcohol copolymer (EVOH), and other materials against different chemical substances to examine their usability in different work processes. The permeation resistance of the chemical protective glove was tested using the Japanese Industrial Standards (JIS) test method against twelve substances: acetone, acetonitrile, dichloromethane, ethyl acetate, n-hexane, methanol, tetrahydrofuran, toluene, 2-propanol, 1-butanol, 1,4-diethylene dioxide, and ethanol. After 480 min, no substance, except for methanol and ethanol, permeated at a standard permeation rate of 0.1 µg/cm2/min. Methanol and ethanol showed permeation at 1 min and 30 min elapsed, respectively. Hence, the gloves tested in this study exhibited permeation resistance to various chemical substances, and can thus be used in many work processes. Some film materials have short permeation time against certain chemical substances, but the chemical protective gloves tested in this study can be used at work sites, such as manufacturing sites, that require permeation resistance to different chemical substances.


Asunto(s)
Guantes Protectores , Exposición Profesional , Metanol , Etanol/química , Acetona/química , Tolueno/química
5.
Food Chem ; 446: 138600, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452500

RESUMEN

An ethanol/(NH4)2SO4 biphasic (aqueous two-phase) system was designed to effectively separate antioxidant peptides from Xuanwei ham, and its potential to prevent ultraviolet A-induced damage to skin cells was explored. Optimization via single factor experiments and response surface methodology revealed that under 20 % ethanol aqueous solution (w/w), 25.5 % (NH4)2SO4 aqueous solution (w/w), and pH 8.80 conditions, the optimal extraction ratio was 59.0 ± 1.73 %. In vitro antioxidant activity and cellular assays showed that the peptide purified in the upper phase exhibited strong antioxidant activity, increasing the viability of HaCat cells damaged by UVA irradiation from 56.14 ± 1.05 % to 66.3 ± 1.76 %. We used an in silico peptide screening strategy and identified 10 with potential antioxidant activity, emphasizing the important role of amino acids Pro, Gly, and Ala in antioxidant activity.


Asunto(s)
Antioxidantes , Citoprotección , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Agua , Etanol/química
6.
J Environ Radioact ; 275: 107425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554648

RESUMEN

As the need for global decommissioning and site remediation of aging and shut-down nuclear power plants continues to grow, it becomes increasingly crucial to efficiently treat contaminated soil while minimizing waste generation. This study explores an innovative soil decontamination approach that utilizes supercritical carbon dioxide (SCCO2) as the primary solvent, along with ethanol as a co-solvent and specific additives, including a chelate ligand (catechol ligand) and a co-ligand (NEt4PFOSA). The advantages of SCCO2, such as its penetration and solubility, coupled with its ability to separate from radioactive waste, are harnessed in this research. The study demonstrates that the combination of SCCO2, ethanol, and additives significantly enhances decontamination efficiency, particularly for cesium (Cs), strontium (Sr), and uranium (U) contamination. Results indicate that decontamination efficiency varies with soil particle size, with smaller particles presenting greater challenges. This study presents a promising eco-friendly soil decontamination technology using SCCO2 containing ethanol and specific additives to efficiently reduce radioactive contamination in soil.


Asunto(s)
Dióxido de Carbono , Descontaminación , Etanol , Contaminantes Radiactivos del Suelo , Descontaminación/métodos , Contaminantes Radiactivos del Suelo/análisis , Etanol/química , Dióxido de Carbono/química , Restauración y Remediación Ambiental/métodos , Radioisótopos de Cesio/química , Suelo/química
7.
Bioresour Technol ; 399: 130595, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493936

RESUMEN

Poplar is widely used in the paper industry and accompanied by abundant branches waste, which is potential feedstock for bioethanol production. Acid-chlorite pretreatment can selectively remove lignin, thereby significantly increasing enzymatic efficiency. Moreover, lignin residues valorization via gasification-syngas fermentation can achieve higher fuel yield. Herein, environmental and economic aspects were conducted to assess technological routes, which guides further process optimization. Life cycle assessment results show that wood-based biorefineries especially coupling scenarios have significant advantages in reducing global warming potential in contrast to fossil-based automotive fuels. Normalization results indicate that acidification potential surpasses other indicators as the primary impact category. In terms of economic feasibility, coupling scenarios present better investment prospects. Bioethanol yield is the most critical factor affecting market competitiveness. Minimum ethanol selling price below ethanol international market price is promising with higher-levels technology. Further work should be focused on technological breakthrough, consumable reduction or replacement.


Asunto(s)
Etanol , Lignina , Animales , Lignina/química , Etanol/química , Madera/metabolismo , Biotecnología/métodos , Fermentación , Estadios del Ciclo de Vida
8.
Bioresour Technol ; 399: 130610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508284

RESUMEN

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Asunto(s)
Líquidos Iónicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sodio , Solventes , Etanol/química , Ácidos , Hidrólisis
9.
Anal Bioanal Chem ; 416(10): 2553-2564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459965

RESUMEN

Crocin-I, a valuable natural compound found in saffron (Crocus sativus L.), is the most abundant among the various crocin structures. Developing a cost-effective and scalable purification process to produce high-purity crocin-I is of great interest for future investigations into its biological properties and its potential applications in the treatment of neurological disorders. However purifying crocin-I through single-column preparative chromatography (batch) poses a yield-purity trade-off due to structural similarities among crocins, meaning that the choice of the collection window sacrifices either yield in benefit of higher purity or vice versa. This study demonstrates how the continuous countercurrent operating mode resolves this dilemma. Herein, a twin-column MCSGP (multicolumn countercurrent solvent gradient purification) process was employed to purify crocin-I. This study involved an environmentally friendly ethanolic extraction of saffron stigma, followed by an investigation into the stability of the crocin-I within the feed under varying storage conditions to ensure a stable feed composition during the purification. Then, the batch purification process was initially designed, optimized, and subsequently followed by the scale-up to the MCSGP process. To ensure a fair comparison, both processes were evaluated under similar conditions (e.g., similar total column volume). The results showed that, at a purity grade of 99.7%, the MCSGP technique demonstrated significant results, namely + 334% increase in recovery + 307% increase in productivity, and - 92% reduction in solvent consumption. To make the purification process even greener, the only organic solvent employed was ethanol, without the addition of any additive. In conclusion, this study presents the MCSGP as a reliable, simple, and economical technique for purifying crocin-I from saffron extract, demonstrating for the first time that it can be effectively applied as a powerful approach for process intensification in the purification of natural products from complex matrices.


Asunto(s)
Distribución en Contracorriente , Crocus , Distribución en Contracorriente/métodos , Solventes/química , Carotenoides/química , Etanol/química
10.
J Ethnopharmacol ; 328: 118094, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hodgsonia heteroclita has been known as an important traditionally consumed medicinal plant of North-East India known to have antidiabetic properties. This study aims to investigate the effects of the ethanolic fruit extract of Hodgsonia heteroclita against hyperglycemia and hyperlipidemia by using streptozotocin (STZ) treated diabetic mice. MATERIALS AND METHODS: The fruits of H. heteroclita were collected from the various parts of Kokrajhar district, Assam India (Geographic coordinates: 26°24'3.85″ N 90°16'22.30″ E). Basic morphological evaluations were carried out by the Botanical Survey of India, Eastern circle, Shillong, who also certified and identified the plant. Hexane, chloroform, and ethanolic extracts of the fruit of H. heteroclita were investigated for α-amylase inhibition assay as a rapid screening tool for examining anti-diabetic activity. The efficacy of ethanolic extract at a dose of 100, 200, and 300 mg/kg body weight was tested for 21 days in STZ-induced diabetic mice. The body weight, fasting plasma glucose and serum lipids, and hepatic glycogen levels were measured in experimental animals to examine the antihyperglycemic and antihyperlipidemic efficacy of the extract. Both HPTLC and LC-MS analysis was performed to examine the phyotochemicals present in the ethanolic extract of H. heteroclita. RESULTS: It has been observed that treatment with the ethanolic extract dose-dependently reduced the plasma glucose levels, total cholesterol, low density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol, triglyceride, and increased the body weight, liver glycogens and high-density lipoprotein-cholesterol in STZ treated diabetic mice. HPTLC demonstrated the presence of triterpene compounds and LC-MS analysis revealed the presence Cucurbitacin I, Cucurbitacin E, and Kuguacin G as the triterpene phytoconstituents. CONCLUSION: The present study demonstrated that ethanolic fruit extract of H. heteroclita improved both glycemic and lipid parameters in mice model of diabetes.


Asunto(s)
Cucurbitaceae , Diabetes Mellitus Experimental , Triterpenos , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/análisis , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Hipolipemiantes/análisis , Glucemia , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Etanol/química , Glucógeno Hepático , Colesterol/farmacología , Peso Corporal , Triterpenos/farmacología , Estreptozocina/farmacología
11.
Int J Biol Macromol ; 264(Pt 1): 130390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403228

RESUMEN

The process of lignin extraction often involves intricate chemical transformations, influencing its potential for high-value utilization. By investigating the process of lignin derivatives extraction from hemp fibers using supercritical CO2, ethanol, and water, we identified the relationship between the chemical structure of lignin derivatives and temperature. This discovery contributes to controlling the chemical structure of lignin derivatives through temperature modulation. We observed that lignin derivatives extracted within the temperature range of 100-120 °C exhibited the lowest average molecular weight and polydispersity index, presenting a disordered microstructure with the highest hydroxyl content. Lignin derivatives extracted between 140 and 160 °C showed an increase in average molecular weight and polydispersity index, decreased hydroxyl content, and a gradual transformation of microstructure into spherical particles. At 180 °C, the average molecular weight and polydispersity index of lignin derivatives decreased, the microstructure of lignin derivatives showed fewer spherical particles, while its hydroxyl content exhibited a partial recovery. Chemical analysis revealed a lower degree of condensation in lignin derivatives at 100-120 °C. Between 120 and 160 °C, the degree of condensation increased. At 180 °C, extensive degradation occurred in lignin derivatives. This research advances innovative techniques for lignin derivative separation, contributing to their utilization in higher-value applications.


Asunto(s)
Cannabis , Lignina , Lignina/química , Etanol/química , Agua/química , Dióxido de Carbono , Temperatura
12.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338308

RESUMEN

The purpose of this investigation was (i) the development of a novel, green tertiary solvent system, composed of water, ethanol and glycerol, and (ii) the implementation of an organosolv treatment of red grape pomace (RGP) for the efficient production of polyphenol-containing extracts with enhanced antioxidant properties. The treatment developed was performed under mild acidic conditions, imparted by the addition of citric acid, and it was first evaluated on the basis of severity, establishing linear models that described the correlation between treatment performance and combined severity factors. To solicit treatment optimization, response surface methodology was implemented, considering solvent acidity and residence time as the treatment variables. The optimized treatment afforded maximum total polyphenol (166 ± 6 mg GAE g-1 DM), total pigment (4.4 ± 0.2 mg MvE g-1 DM) and total flavanol (31.5 mg CtE g-1 DM) yields and extracts with particularly enhanced antioxidant activity. This might be attributed to specific constituents with high antioxidant potency, such as catechin, determined in the extract using high-performance liquid chromatography. Thus, the treatment developed is proposed as a highly efficient process to generate RGP extracts enriched in polyphenolic compounds, with enhanced antioxidant activity. Such extracts might then be valorized as food additives, to provide antioxidant protection and/or pigmentation.


Asunto(s)
Polifenoles , Vitis , Polifenoles/química , Antioxidantes/química , Vitis/química , Glicerol , Etanol/química , Agua , Solventes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Inflammopharmacology ; 32(2): 1607-1620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310564

RESUMEN

This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1ß, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1ß, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.


Asunto(s)
Plantas Medicinales , Animales , Ratones , Plantas Medicinales/química , Lipopolisacáridos/farmacología , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos , Citocinas/metabolismo , Antiinflamatorios/química , Etanol/química , Óxido Nítrico/metabolismo
14.
J Dent ; 144: 104873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38316198

RESUMEN

OBJECTIVES: This study aimed to investigate the effect of post-washing duration and crown thickness on the bond strength between additively manufactured crown materials and dental cement in vitro. METHODS: Rectangular-shaped specimens of two thicknesses (1.5 and 2.0 mm) were additively manufactured from permanent VarseoSmile Crown (VC) and long-term temporary NextDent (ND) materials. The specimens were post-washed (n = 160) in ethanol for 5 min, 10 min, 1 h, and 8 h then cemented with dual-cure resin cement. Twenty PMMA (TC) were milled as a control. A chevron-notch test was performed to measure the maximum load until failure (N). Interfacial bond strength (J/m2) was calculated and statistically analysed. The mode of failure was analysed by scanning electron microscopy (SEM). RESULTS: There was a significant difference in the bond strength between all groups (p < 0.01). VC at 1.5mm thickness post-washed for 10 min showed the highest mean bond strength (1.77 ±0.96 J/m2) while VC at 2.0mm thickness post-washed for 8 h showed the lowest (0.22 ±0.10 J/m2). Exposure to ethanol for 8 h resulted in lower bond strength. Within the type of material, there were no differences in bond strength between the thicknesses when post-washed for the same duration. CONCLUSIONS: Prolonged post-washing of AM crown materials can significantly decrease the bond strength to resin cement. There were no differences between the permanent and long-term temporary AM materials. When post-washed for 5 min, AM materials observed comparable or higher bond strength values compared to PMMA. CLINICAL SIGNIFICANCE: The output of this research serves as a guide for dental practitioners, emphasising the importance of adhering to correct post-washing procedures for optimal bond strength of additively manufactured crown materials.


Asunto(s)
Coronas , Recubrimiento Dental Adhesivo , Etanol , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Cementos de Resina , Etanol/química , Cementos de Resina/química , Factores de Tiempo , Humanos , Análisis del Estrés Dental , Propiedades de Superficie , Polimetil Metacrilato/química , Materiales Dentales/química , Estrés Mecánico , Cementación/métodos
15.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350502

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Asunto(s)
Artritis Experimental , Opuntia , Ratas , Animales , Citocinas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Glutaminasa , Piroxicam/uso terapéutico , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Etanol/química , Inflamación/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Flavonoides/uso terapéutico
16.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398548

RESUMEN

The ultrasonic-assisted extraction (UAE) method was employed to separate Cinnamomum camphora proanthocyanidin-rich extracts (PCEs). This extraction process was optimized by the Box-Behnken design, and the optimal conditions, on a laboratory scale, were as follows: an ethanol concentration of 75%, a liquid-to-solid ratio of 24 mL/g, an ultrasonic time of 39 min, and an ultrasonic power of 540 W. Under the obtained conditions, the PCE yield extracted by UAE was higher than that from heat reflux extraction and soaking extraction. An ultra-performance liquid chromatography-tandem mass spectrometry analysis was employed to characterize the phloroglucinolysis products of the C. camphora PCEs, by which epigallocatechin, catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were identified as the terminal units; epigallocatechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were recognized as extension units. The C. camphora PCEs possessed higher anti-ultraviolet activity in vitro compared with the commercially available sunscreen additive of benzophenone with respect to their ethanol solutions (sun protection factor of 27.01 ± 0.68 versus 1.96 ± 0.07 at a concentration of 0.09 mg/mL) and sunscreens (sun protection factor of 17.36 ± 0.62 versus 14.55 ± 0.47 at a concentration of 20%). These results demonstrate that C. camphora PCEs possess an excellent ultraviolet-protection ability and are promising green sunscreen additives that can replace commercial additives.


Asunto(s)
Catequina , Cinnamomum camphora , Proantocianidinas , Ultrasonido , Protectores Solares , Etanol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
17.
Sci Rep ; 14(1): 3469, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342928

RESUMEN

The aim of this study was to investigate the potential of Ipomoea carnea flower methanolic extract (ICME) as a natural gastroprotective therapy against ethanol-induced gastric ulcers, particularly in individuals exposed to ionizing radiation (IR). The study focused on the Nrf2/HO-1 signaling pathway, which plays a crucial role in protecting the gastrointestinal mucosa from oxidative stress and inflammation. Male Wistar rats were divided into nine groups, the control group received distilled water orally for one week, while other groups were treated with ethanol to induce stomach ulcers, IR exposure, omeprazole, and different doses of ICME in combination with ethanol and/or IR. The study conducted comprehensive analyses, including LC-HRESI-MS/MS, to characterize the phenolic contents of ICME. Additionally, the Nrf2/HO-1 pathway, oxidative stress parameters, gastric pH, and histopathological changes were examined. The results showed that rats treated with IR and/or ethanol exhibited histopathological alterations, increased lipid peroxidation, decreased antioxidant enzyme activity, and reduced expression levels of Nrf2 and HO-1. However, pretreatment with ICME significantly improved these parameters. Phytochemical analysis identified 39 compounds in ICME, with flavonoids, hydroxybenzoic acids, and fatty acids as the predominant compounds. Virtual screening and molecular dynamics simulations suggested that ICME may protect against gastric ulceration by inhibiting oxidative stress and inflammatory mediators. In conclusion, this study demonstrates the potential of ICME as a natural gastroprotective therapy for preventing gastric ulcers. These findings contribute to the development of novel interventions for gastrointestinal disorders using natural plant extracts particularly in individuals with a history of radiation exposure.


Asunto(s)
Extractos Vegetales , Úlcera Gástrica , Animales , Ratas , Antioxidantes/farmacología , Etanol/química , Mucosa Gástrica/metabolismo , Metanol/química , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Ratas Wistar , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/etiología , Úlcera Gástrica/prevención & control , Espectrometría de Masas en Tándem , Úlcera/patología
18.
J Ethnopharmacol ; 325: 117914, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360381

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and ß-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated. AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice. MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study. RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 µg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p < 0.05) increase in liver enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The histopathological score showed mild hepatocellular necrosis in administering 250, 500, and 1000 mg/kg of MLE. The parameters of renal injury were within normal limits, with the increase in eosinophilic cytoplasm observed in the histological scoring at 1000 mg/kg of MLE. CONCLUSIONS: Morus alba leaf extract showed abundant polyphenols. In a study on subacute toxicity, MLE caused mild hepatotoxicity in mice. The toxic effect of the extract may be due to kaempferol and chlorogenic acid compounds. The 125 mg/kg MLE dose was safe with no adverse effects.


Asunto(s)
Diabetes Mellitus , Morus , Ratones , Femenino , Animales , Extractos Vegetales/toxicidad , Extractos Vegetales/análisis , Antioxidantes , Ácido Clorogénico , Morus/química , Etanol/química , Fenoles , Fitoquímicos/toxicidad , Fitoquímicos/análisis , Hojas de la Planta/química
19.
Magn Reson Chem ; 62(6): 429-438, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230451

RESUMEN

In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field. First, high and low-field data on D-glucose are compared and students learn both the Hz and ppm scales and how J-coupling is field-independent. The students then acquire their own quantitative NMR datasets and perform the quantification using an Electronic Reference To Access In Vivo Concentration (ERETIC) technique. To our knowledge ERETIC is not currently taught at the undergraduate level, but has an advantage in that internal standards are not required; ideal for following processes or with future use in flow-based benchtop monitoring. Using this quantitative data, students can relate a simple chemical process (fermentation) back to more complex topics such as reaction kinetics, bridging the gaps between analytical and physical chemistry. When asked to reflect on the experiment, students had an overwhelmingly positive experience, citing agreement with learning objectives, ease of understanding the protocol, and enjoyment. Each of the respondents recommended this experiment as a learning tool for others. This experiment has been outlined for other instructors to utilize in their own courses across institutions, with the hope that a continued expansion of low-field NMR will increase accessibility and learning opportunities at the undergraduate level.


Asunto(s)
Espectroscopía de Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Etanol/química , Glucosa/análisis , Estudiantes , Humanos , Universidades
20.
J Oleo Sci ; 73(1): 55-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171731

RESUMEN

Highly pure 2,3-dioleoyl-1-O-alkyl glyceryl ether (DOGE), whose 1-position is a lipase-tolerant ether bond, was chemically synthesized and its detailed regioselectivity and acyl transfer were confirmed. During ethanolysis using immobilized Candida antarctica lipase B (CAL-B) with DOGE as the substrate, monooleoyl-1-O-alkyl glyceryl ethers (MOGEs) and a few 1-alkyl glyceryl ethers were formed upon consumption of the substrate. The structure of MOGE was confirmed using nuclear magnetic resonance spectroscopy and only the isomer of 2-MOGE was formed, indicating that CAL-B has complete α- regiospecificity. During ethanolysis, 3-MOGE was formed via acyl migration. These results indicate that the formation of 1-alkyl glyceryl ethers is not due to the imperfect regiospecificity of CAL-B, but rather due to ethanolysis of the formed 3-MOGE. The ethanolysis rate at the 3-α-position of DOGE was faster and the rate of acyl transfer was slightly slower for chain lengths greater than 14. These results show for the first time that both deacylation at the 3-position and acyl migration from the 2- to 3-position are affected by the structure of 1-position.


Asunto(s)
Etanol , Éteres de Glicerilo , Etanol/química , Lipasa/química , Proteínas Fúngicas/química , Enzimas Inmovilizadas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...